已知直角坐标系中菱形ABCD的位置如图,C、D两点的坐标分别为(8,0)、(0,6).现有两动点P、Q分别从A、C同时出发,点P沿折线ADC向终点C运动, 点Q沿线段CA向终点A运动,当P、Q两点中有一点到达终点时,另一点也立即停止运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是 ,面积是 ;
(2)探究下列问题:
①若点P的速度为每秒2.5个单位,点Q的速度为每秒3个单位,求△APQ的面积S关于t的函数关系式,并求出S的最大值;
②在运动过程中,能否使得△APQ绕它的一边中点旋转180°,旋转前后两个三角形组成的四边形为矩形,若存在,求出t的值;若不存在,请说明理由.
计算或化简:(每小题5分,共10分)
(1)(2)
(本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=
经过点C,交y轴于点G,且∠AGO=30°。
(1)点C、D的坐标分别是C(),D();
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存
在,请求出此时抛物线的解析式;若不存在,请说明理由。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
(本题10分) 如图,直线与反比例函数
的图象交于A
,B
两点.
(1)求、
的值?
(2)直接写出时x的取值范围?
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE
⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,
请判断PC和PE的大小关系,并说明理由.
(本题8分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,
和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-X-2上的概率.