已知椭圆的中心在原点,焦点在
轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为
的正方形(记为
)
(Ⅰ)求椭圆的方程
(Ⅱ)设点是直线
与
轴的交点,过点
的直线
与椭圆
相交于
两点,当线段
的中点落在正方形
内(包括边界)时,求直线
斜率的取值范围
(本小题满分13分)
设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R)当x=-1时,f(x)取得极大值,且函数y=f(x+1)的图象关于点(-1,0)对称.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-,]上;
(Ⅲ)设xn=,ym=(m,n∈N),求证:|f(xn)-f(ym)|<.
(本小题满分13分)
如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
.(本小题满分13分)
将3封不同的信投进A、B、C、D这4个不同的信箱、假设每封信投入每个信箱的可能性相等.
(Ⅰ)求这3封信分别被投进3个信箱的概率;
(Ⅱ)求恰有2个信箱没有信的概率;
(Ⅲ)求A信箱中的信封数量的分布列和数学期望.
.(本小题满分13分)
已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为.
(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时f(x)的值域.
(本小题满分14分)
已知直线
:
与圆
:
相交于
、
两点,点
满足
.
(Ⅰ)当时,求实数
的值;
(Ⅱ)当时,求实数
的取值范围;
(Ⅲ)设、
是圆
:
上两点,且满足
,试问:是否存在一个定圆
,使直线
恒与圆
相切.