平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.
已知:四边形 .
求作:点 ,使 ,且点 到边 和 的距离相等.
如图,抛物线 经过点 ,与 轴负半轴交于点 ,与 轴交于点 ,且 .
(1)求抛物线的解析式;
(2)点 在 轴上,且 ,求点 的坐标;
(3)点 在抛物线上,点 在抛物线的对称轴上,是否存在以点 , , , 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点 的坐标;若不存在,请说明理由.
数学课上,张老师出示了问题:如图1, , 是四边形 的对角线,若 ,则线段 , , 三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长 到 ,使 ,连接 ,证得 ,从而容易证明 是等边三角形,故 ,所以 .
小亮展示了另一种正确的思路:如图3,将 绕着点 逆时针旋转 ,使 与 重合,从而容易证明 是等边三角形,故 ,所以 .
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
某市为节约水资源, 制定了新的居民用水收费标准, 按照新标准, 用户每月缴纳的水费 (元 与每月用水量 之间的关系如图所示 .
(1) 求 关于 的函数解析式;
(2) 若某用户二、 三月份共用水 (二 月份用水量不超过 ,缴纳水费 79.8 元, 则该用户二、 三月份的用水量各是多少 ?
如图, 的平分线交 的外接圆于点 , 的平分线交 于点 .
(1)求证: ;
(2)若 , ,求 外接圆的半径.