游客
题文

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.

(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知:四边形 ABCD

求作:点 P ,使 PCB = B ,且点 P 到边 AD CD 的距离相等.

如图,抛物线 y = a x 2 + bx 3 经过点 A ( 2 , 3 ) ,与 x 轴负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 3 OB

(1)求抛物线的解析式;

(2)点 D y 轴上,且 BDO = BAC ,求点 D 的坐标;

(3)点 M 在抛物线上,点 N 在抛物线的对称轴上,是否存在以点 A B M N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

数学课上,张老师出示了问题:如图1, AC BD 是四边形 ABCD 的对角线,若 ACB = ACD = ABD = ADB = 60 ° ,则线段 BC CD AC 三者之间有何等量关系?

经过思考,小明展示了一种正确的思路:如图2,延长 CB E ,使 BE = CD ,连接 AE ,证得 ΔABE ΔADC ,从而容易证明 ΔACE 是等边三角形,故 AC = CE ,所以 AC = BC + CD

小亮展示了另一种正确的思路:如图3,将 ΔABC 绕着点 A 逆时针旋转 60 ° ,使 AB AD 重合,从而容易证明 ΔACF 是等边三角形,故 AC = CF ,所以 AC = BC + CD

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图4,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = 45 ° ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.

(2)小华提出:如图5,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = α ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

某市为节约水资源, 制定了新的居民用水收费标准, 按照新标准, 用户每月缴纳的水费 y (元 ) 与每月用水量 x ( m 3 ) 之间的关系如图所示 .

(1) 求 y 关于 x 的函数解析式;

(2) 若某用户二、 三月份共用水 40 m 3 (二 月份用水量不超过 25 m 3 ) ,缴纳水费 79.8 元, 则该用户二、 三月份的用水量各是多少 m 3

如图, BAC 的平分线交 ΔABC 的外接圆于点 D ABC 的平分线交 AD 于点 E

(1)求证: DE = DB

(2)若 BAC = 90 ° BD = 4 ,求 ΔABC 外接圆的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号