设为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,
=0,当四点不共面时,
的值为四点组成的四面体的体积.
(1)求概率P(=0);
(2)求的分布列,并求其数学期望E (
).
已知实数,设函数
.
(1)证明:;
(2)若,求
的取值范围.
在直角坐标系中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴非负半轴为极轴)中,圆
的方程为
.
(1)求圆的直角坐标方程;
(2)若点,设圆
与直线
交于点
,
.求
的最小值.
如图,交圆于
,
两点,
切圆于
,
为
上一点且
,连接
并延长交圆于点
,作弦
垂直
,垂足为
.
(1)求证:为圆的直径;
(2)若,求证:
.
已知函数.
(1)求函数的单调区间;
(2)若对定义域内的任意
恒成立,求实数
的取值范围;
(3)证明:对于任意正整数,
,不等式
恒成立.
已知点是椭圆
上的任意一点,
,
是它的两个焦点,
为坐标原点,动点
满足
.
(1)求动点的轨迹
的方程;
(2)若与坐标轴不垂直的直线交轨迹
于
,
两点且
,求
面积
的取值范围.