某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
已知与
成反比例,且当
时,
(1)求与
之间的函数关系式;
(2)求当时,
的值。
如图,AB是⊙O的直径,且AD∥OC,若弧AD的度数为80°,求弧CD的度数。
如图1所示,已知在△ABC和△DEF中, ,
.
(1)试说明:△ABC≌△FED的理由;
(2)若图形经过平移和旋转后得到如图2,若,试求∠DHB的度数;
(3)若将△ABC继续绕点D旋转后得到图3,此时D、B、F三点在同一条直线上,若DF:FB=3:2,连结EB,已知△ABD的周长是12,且AB-AD=1,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请说明理由。
某山区有若干名中、小学生因贫困失学需要捐款,某中学七八年级学生举行“献爱心”募捐活动。七、八年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:
捐款数额(元) |
资助贫困中学生人数 |
资助贫困小学生人数 |
|
初一年级 |
4000 |
2 |
4 |
初二年级 |
4200 |
3 |
3 |
问每位贫困中学生和小学生每年的生活费用分别需要多少元?
请你依据下面的寻宝游戏规则,探究“寻宝游戏”的奥秘。
(1)用树状图或列表的方式表示出所有可能的寻宝情况
(2)求在寻宝游戏中胜出的概率。