某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
| 统计信息 汽车行驶路线 |
在不堵车的情况下到达城市乙所需时间(天) |
在堵车的情况下到达城市乙所需时间(天) |
堵车的概率 |
运费(万元) |
| 公路1 |
2 |
3 |
![]() |
1.6 |
| 公路2 |
1 |
4 |
![]() |
0.8 |
(I)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为
(单位:万元),求
的分布列和数学期望
;
(II)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)
(本小题共12分)北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x元(x∈N*).(Ⅰ)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域);(Ⅱ)当每枚纪念销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值.
(本小题共12分) 已知两圆
,
求(1)它们的公共弦所在直线的方程;(2)公共弦长。
(本小题共12分) 证明函数
在
上是增函数。
(本小题共12分)对于二次函数
,
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)求函数的最大值或最小值;
(3)分析函数的单调性。
椭圆E经过点A(2,3),对称轴为坐标轴,焦点
轴上,离心率

(I)求椭圆E的方程;
(II)求
的角平分线所在直线的方程