已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数
的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,
),tan∠BOC
。
(l)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标。
.如图,⊙O是△的外接圆,
,
为⊙O的直径,且
,连结
.求BC的长.
用配方法将二次函数化为
的形式(其中
为常数
),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.
已知:如图,∠1=∠2,AB•AC=AD•AE.求证:∠C=∠E.
(本题6分)已知:如右图,在直径为10的⊙O中,做两条互相垂直的直径AE和BF,在弧EF上取点C,弦AC交BF于P,弦CB交AE于Q,求证:四边形APQB的面积等于25.
(本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.