如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).
(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,
)].
如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.
(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;
(2)求证:NM=NP;
(3)当△NPC为等腰三角形时,求∠B的度数.
定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.
如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.
(1)=AA1•A C;
(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)
(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)
如图,在平面直角坐标系中,已知抛物线的对称轴为
,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.
(1)求抛物线的解析式;
(2)填空:①用含m的式子表示点C,D的坐标:C( , ),D( , );
②当m= 时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.
如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q.
( 1 )这条抛物线的对称轴是 ,直线PQ与x軸所夹锐角的度数是 ,
(2)若两个三角形面积满足,求m的値:
(3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求:
PD+DQ的最大值;②PDDQ的最大值.
定义:长宽比为:1(n为正基数)的矩形称为株为
矩形.下面,我们通过折叠的方式折出一个
矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
.
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形
阅读以上内容,回答下列问题:
在图中,所有与CH相等的线段是 ,tan
的值是
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
。
求证:四边形BCMN是矩形
将图中的
矩形BCMN沿用(2)中的操作3次后,得到一个“
矩形”,则n的值是