问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.
(本题共两小题,每小题6分,满分12分)
(1)计算:;
(2)化简:
已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)说明:△BCE≌△DCF;
(2)OG与BF有什么数量关系?说明你的结论;
(3)若BC·BD=,求正方形ABCD的面积.
如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA:PB:PC=1::
,试判断△PMC的形状,并说明理由.
如图所示,∠MBN=45°,若△ABC的顶点
A在射线BM上,且AB=,点C在射线BN运动(C
不与B重合).请你探究:
(1)当BC=时,△ABC是直角三角形,并标出所有符合要求的C点;
(2)当BC的值在范围时,△ABC是锐角三角形;
(3)当BC的值在范围时,△ABC是钝角三角形 .
已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形,
(1)求证:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE