如图所示,光滑的水平面上静止着半径相同的三个小球A、B、C,其中小球A、C的质量分别为mA=m、mC=4m。现使A以初速沿B、C的连线方向向B运动,求B球的质量M为何值时,才能使C球碰撞后的速度最大?(已知A、B、C之间的碰撞均为弹性碰撞)
如右图所示,电源电动势E="10" V,内阻r=0.5Ω,标有“8 V,16 W”的灯泡恰好能正常发光,电动机M绕组的电阻R0=1Ω,求:通过电源的电流;
电源的输出功率;
电动机的输出功率。
把一个电荷量为2.0×10-8C的正点电荷从电场中的A点移到无限远处,电场力做功8.0×10-6J,若把该电荷从无限远处移到电场中的B点,需克服电场力做功2.0×10-6J,取无限远处电势为零。求:
A点的电势
若把2.0×10-5C的负电荷由A点移到B点电场力做的功
如图所示,小球的质量为m,,悬挂小球的丝线与竖直方向成θ角时,小球恰好在场强为E的匀强电场中静止不动,丝线长度为L。小球带何种电荷,电量是多少?
将小球从图示位置拉回到悬线竖直方向电势能如何变化?
若将小球从竖直方向成θ角的位置缓慢拉回到悬线竖直的方向,则拉力做功多少?
如图所示,在水平面上固定一光滑金属导轨HGDEF,EF∥GH,DE=EF=DG=GH=EG=L.一质量为m足够长导体棒AC垂直EF方向放置于在金属导轨上,导轨与导体棒单位长度的电阻均为r.整个装置处在方向竖直向下、磁感应强度为B的匀强磁场中.现对导体棒AC施加一水平向右的外力,使导体棒从D位置开始以速度v0沿EF方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.求导体棒运动到FH位置,即将离开导轨时,FH两端的电势差.
关于导体棒运动过程中回路产生感应电流,小明和小华两位同学进行了讨论.小明认为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切割长度不变,电流才是恒定不变的.你认为这两位同学的观点正确吗?请通过推算证明你的观点.
求导体棒从D位置运动到EG位置的过程中,导体棒上产生的焦耳热.
在地面上方某处的真空室里存在着水平方向的匀强电场,以水平向右和竖直向上为x轴、y轴正方向建立如图所示的平面直角坐标系.一质量为m、带电荷量为+q的微粒从点P(l,0)由静止释放后沿直线PQ运动.当微粒到达点Q(0,-l)的瞬间,突然将电场方向顺时针旋转900,同时加上一个垂直于纸面向外的匀强磁场(图中未画出),磁感应强度的大小B=,该磁场有理想的下边界,其他方向范围无限大.已知重力加速度为g.求:
匀强电场的场强E的大小
欲使微粒不从磁场下边界穿出,该磁场下边界的y轴坐标值应满足什么条件?
求微粒从P点开始运动到第二次经过y轴所需要的时间。