已知椭圆C:=1(a>b>0)的离心率为
,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4
.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足+
=t
(O为坐标原点),当|
-
|<
时,求实数t的取值范围.
(本小题满分10分)在中,角A,B,C的对边分别是
,已知向量
,
,且
。
(Ⅰ)求角A的大小;
(Ⅱ)若,求
面积的最大值。
设函数.
(1)解不等式;
(2)若关于的不等式
的解集不是空集,试求实数
的取值范围.
已知圆锥曲线C:为参数)和定点
,
是此圆锥曲线的左、右焦点。
(1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;
(2)经过点,且与直线
垂直的直线
交此圆锥曲线于
两点,求
的值.
如图,是圆的两条平行弦,
,
交
于
、交圆于
,过
点的切线交
的延长线于
,
,
.
(1)求的长;
(2)求证:.
(本小题满分12分)已知函数
(1)当时,求曲线
在点
处的切线方程;
(2)当时,若
在区间
上的最小值为-2,求
的取值范围;
(3)若对任意,且
恒成立,求
的取值范围。