设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.
已知函数
(1)若对任意的恒成立,求实数
的最小值.
(2)若且关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)设各项为正的数列满足:
求证:
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直, AA1=AB=AC=1,AB⊥AC, M是CC1的中点, N是BC的中点,点P在线段A1B1上,且满足A1P=lA1B1.
(1)证明:PN⊥AM.
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.
(3)是否存在点P,使得平面 PMN与平面ABC所成的二面角为45°.若存在求出l的值,若不存在,说明理由.
已知定义在R上的函数,
定义:.
(1)若,当
时比较
与
的大小关系.
(2)若对任意的,都有使得
,用反证法证明:
.
已知且
,设
,
.(1)试求
的系数的最小值;
(2)对于使的系数为最小的
,求此时
的近似值(精确到0.01).
在复数范围内解方程.(i为虚数单位)