如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.
已知椭圆:
,左、右两个焦点分别为
、
,上顶点
,
为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,
是直线
上的一个动点,求
的最小值,并求出此时点
的坐标.
如图,已知,
分别是正方形
边
、
的中点,
与
交于点
,
、
都垂直于平面
,且
,
,
是线段
上一动点.
(Ⅰ)求证:平面平面
;
(Ⅱ)若平面
,试求
的值;
(Ⅲ)当是
中点时,求二面角
的余弦值.
某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.
(1)请根据图中所给数据,求出a的值;
(2)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.
数列是递增的等比数列,且
.
(Ⅰ)若,求证:数列
是等差数列;
(Ⅱ)若,求
的最大值.
已知函数的图象经过点
.
(1)求函数的最小正周期与单调递增区间.
(2)若,且
,求
的值.