学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).(1)求在1次游戏中:①摸出3个白球的概率;②获奖的概率.(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
已知复数z1=m(m-1)+(m-1)i是纯虚数. (1)求实数m的值; (2)若(3+z1)=4+2i,求复数z.
已知,, (1)求和; (2)若记符号, ①在图中把表示“集合”的部分用阴影涂黑; ②求和.
(本小题满分16分)已知函数,. (Ⅰ)若,试求函数()的最小值; (Ⅱ)对于任意的,不等式成立,试求的取值范围.
(本小题满分16分)已知. (1)若,求曲线在点处的切线方程; (2)若求函数的单调区间.
(本小题满分15分)证明:已知,则
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号