学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).(1)求在1次游戏中:①摸出3个白球的概率;②获奖的概率.(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
已知,其中. (1)若对定义域内的任意x,都有,求b的值; (2)若函数在其定义域内是单调函数,求b的取值范围; (3)若,证明:对任意的正整数n,不等式都成立。
在锐角△ABC中,分别是角A,B,C的对边,,且∥。 (1)求角A的大小; (2)求函数的值域。
已知等差数列的公差大于0,且是方程的两根。数列的前n项和为,且。 (1)求通项; (2)记,求证:。
已知:不等式:函数+6在上有极值,求使“p且q”为真命题时m的范围。
设函数在处取得最小值, (1)求的值; (2)在△ABC中,分别是角A,B,C的对边,已知,求角C。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号