已知椭圆的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
已知函数(
且
).
(1)当时,求证:
在
上单调递增;
(2)当且
时,求证:
.
曲线,曲线
.自曲线
上一点
作
的两条切线切点分别为
.
(1)若点的纵坐标为
,求
;
(2)求的最大值.
如图,已知平面
,
为等边三角形.
(1)若,求证:平面
平面
;
(2)若多面体的体积为
,求此时二面角
的余弦值.
在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量
的概率分布列和数学期望.
在中,
为
边上的点
,且
.
(1)求;
(2)若,求
.