已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Sn+m=(S2n+S2m)-(n-m)2,其中m,n为任意正整数.
(1)求数列{an}的通项公式及前n项和Sn;
(2)求满足-
an+33=k2的所有正整数k,n.
已知函数
(Ⅰ)若函数恰好有两个不同的零点,求
的值。
(Ⅱ)若函数的图象与直线
相切,求
的值及相应的切点坐标。
已知,
是椭圆
左右焦点,它的离心率
,且被直线
所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当
为钝角时,求
的取值范围。
已知函数f(x)=cos(2x+)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间;⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.
⑴ 若cosA=-,求cosC的值;⑵ 若AC=
,BC=5,求△ABC的面积.
⑴ 求-
的值;
⑵ 已知tana=3,求的值.