游客
题文

如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的U-t图象如图乙所示.在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B=0.01 T,方向垂直纸面向里.现有带正电的粒子连续不断地以速度v0=105 m/s射入电场中,初速度方向沿两板间的中线OO′方向.磁场边界MN与中线OO′垂直.已知带电粒子的比荷=108 C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计.

(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度当做恒定的.请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射入电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断:d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围.

科目 物理   题型 计算题   难度 较难
知识点: 判断洛伦兹力的方向
登录免费查看答案和解析
相关试题

如图所示,矩形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,磁场宽度及BB′与CC′之间的距离相同.某种带正电的粒子从AA′上的O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域Ⅰ内的运动时间均为t0;当速度为v0时,粒子在区域Ⅰ内的运动时间为.求:

(1)粒子的比荷
(2)磁场区域Ⅰ和Ⅱ的宽度d;
(3)速度为v0的粒子从O1到DD′所用的时间.

如图所示,是一次娱乐节目中的一个游戏示意图,游戏装置中有一个光滑圆弧形轨道,高为h,半径为R,固定在水平地面上,它的左端切线沿水平方向,左端与竖直墙面间的距离为x,直墙高为H,滑板运动员可从墙面的顶部沿水平方向飞到地面上。游戏规则是让一滑块从弧形轨道的最高点由静止滑下,当它滑到轨道底端时,滑板运动员立即以某一初速度水平飞出,当滑块在水平面上停止运动时,运动员恰好落地,并将滑块捡起就算获胜,已知滑块到达底端时对轨道的压力大小为F,重力加速度为g,求:(不计滑板的长度,运动员看作质点)

(1)滑块的质量;
(2)滑块与地面间的动摩擦因数:
(3)滑板运动员要想获胜,他飞出时的初速度多大?

如图所示,板长L=10 cm,板间距离d=10 cm的平行板电容器水平放置,它的左侧有与水平方向成60°角斜向右上方的匀强电场,某时刻一质量为m、带电量为q的小球由O点静止释放,沿直线OA从电容器C的中线水平进入,最后刚好打在电容器的上极板右边缘,O到A的距离x=45cm,(g取10 m/s2)求:

(1)电容器外左侧匀强电场的电场强度E的大小;
(2)小球刚进入电容器C时的速度v的大小;
(3)电容器C极板间的电压U.

光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B,竖直放置的正方形金属线框边长为l、电阻为R、质量为m,线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平。开始时,线框与物块静止在图中虚线位置且细线水平伸直。将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角=30°,线框刚好有一半处于右侧磁场中。(已知重力加速度g,不计一切摩擦)求:

(1)此过程中通过线框截面的电荷量q;
(2)此时安培力的功率;
(3)此过程在线框中产生的焦耳热Q。

如图,坐标系xOy在竖直平面内,第一象限内分布匀强磁场,磁感应强度大小为B,方向垂直纸面向外;第二象限内分布着沿x轴正方向的水平匀强电场,场强大小E=,质量为m、电荷量为+q的带电粒子从A点由静止释放,A点坐标为(L,L),在静电力的作用下以一定速度v进入磁场,最后落在x轴上的P点,不计粒子的重力,求:

(1)带电粒子进入磁场时的速度v大小.
(2)P点与O点之间的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号