如图①,②,在平面直角坐标系中,点
的坐标为(4,0),以点
为圆心,4为半径的圆与
轴交于
,
两点,
为弦,
,
是
轴上的一动点,连结
。
(1)求的度数;
(2)如图①,当与⊙A相切时,求
的长;
(3)如图②,当点在直径
上时,
的延长线与⊙A相交于点
,问
为何值时,
是等腰三角形?
分解因式:
解不等式组,并把解集表示在数轴上。
苏科版七年级(上册第119页)这样写道:
棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形.底面是正三角形的直棱柱叫正三棱柱.
现给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.
如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.
如图,平面直角坐标系中,抛物线与
轴交于点A、B(点A在
点B左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段AC交于点N,点P为线
段AC上一个动点(与A、C不重合) .
(1)求点A、B的坐标;
(2)在抛物线的对称轴上找一点D,使|DC-DA|的值最大,求点D的坐标;
(3)过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点的坐标.
如图,在直角坐标系中,半径为1的⊙圆心与原点
重合,直线
分别交
轴、
轴于点
、点
,若点
的坐标为
且
.
⑴若点是⊙
上的动点,求
到直线
的最小距离,并求此时点
的坐标;
⑵若点从原点
出发,以1个单位/秒的速度沿着线路
运动,回到点
停止运动,⊙
随着点
的运动而移动.
①求⊙在整个运动过程中所扫过的面积;
②在⊙整个运动过程中,⊙
与
的三边相切有种不同的情况,分别写出不同情况下,运动时间
的取值 .