如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC.
(1)求证:四边形ABFC是平行四边形;
(2)如果DE2=BE·CE,求证四边形ABFC是矩形.
我市某县政府为了迎接"八一"建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成
、
两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配
、
两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)
(1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来。
(2)如果搭配及摆放一个
造型需要的人力是8人次,搭配及摆放一个
造型需要的人力是11次,哪种方案使用人力的总人次数最少,请说明理由。
已知矩形ABCD的对角线相交于点O,M 、N分别是OD、OC上异于O、C、D的点。
(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④
中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是。
(2)添加条件后,请证明四边形ABNM是等腰梯形。
(本小题满分10分)已知二次函数
(1)当时,函数值
随
的增大而减小,求
的取值范围。
(2)以抛物线的顶点
为一个顶点作该抛物线的内接正三角形
(
,
两点在抛物线上),请问:△
的面积是与
无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线与
轴交点的横坐标均为整数,求整数
的值。
(本小题满分9分)已知⊙与⊙
相交于
、
两点,点
在⊙
上,
为⊙
上一点(不与
,
,
重合),直线
与⊙
交于另一点
。
(1)如图(8),若是⊙
的直径,求证:
;
(2)如图(9),若是⊙
外一点,求证:
;
(3)如图(10),若是⊙
内一点,判断(2)中的结论是否成立。
今年,号称"千湖之省"的湖北正遭受大旱,为提高学生环
境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水
的管理措施,其中对居民生活用水收费作如下规定:
(1)若某用户六月份用水量为
吨,求其应缴纳的水费;
(2)记该用户六月份用水量为
吨,缴纳水费为
元,试列出
与
的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费
元的取值范围为
的取值范围。
各位同学,请你也认真做一做,相信聪明的你一定会顺利完成。