设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.
已知非空有限实数集S的所有非空子集依次记为S1,S2,S3,,集合Sk中所有元素的平均
值记为bk.将所有bk组成数组T:b1,b2,b3,,数组T中所有数的平均值记为m(T).
(1)若S={1,2},求m(T);
(2)若S={a1,a2, ,an}(n∈N*,n≥2),求m(T).
如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=
BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.
已知a,b,cR,a2+2b2+3c2=6,求a+b+c的最大值.
在平面直角坐标系xOy中,已知M是椭圆=1上在第一象限的点,A(2,0),B(0,2
)
是椭圆两个顶点,求四边形OAMB的面积的最大值.
已知矩阵A=(k≠0)的一个特征向量为α=
,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.