已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.(1)求椭圆的方程;(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
在复平面上,设点A、B、C ,对应的复数分别为。过A、B、C 做平行四边形ABCD。 求点D的坐标及此平行四边形的对角线BD的长。
用适当方法证明:已知:,求证:。
在数列{an}中,,试猜想这个数列的通项公式。
对于区间(或、、),我们定义为该区间的长度,特别地,和的区间长度为正无穷大. (1)关于的不等式的解集的区间长度不小于4,求实数的取值范围; (2)关于的不等式恰好有3个整数解,求实数的取值范围.
已知{}是等差数列,其前项和为,{}是等比数列,且=,,. (1)求数列{}与{}的通项公式; (2)记,求满足不等式的最小正整数的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号