某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.
(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;
(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))
处的切线与x轴的交点为(xn+1,0)(n∈N+),其中x1为正实数.
(1)用xn表示xn+1;
(2)求证:对一切正整数n,xn+1≤xn的充要条件是x1≥2;
(3)若x1=4,记an=lg ,证明数列{an}成等比数列,并求数列{xn}的通项公式.
用数学归纳法证明:对任意n∈N+,成立.
观察下表:
1,
2,3
4,5,6,7
8,9,10,11,12,13,14,15,
…
问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 008是第几行的第几个数?
设a>0,b>0,2c>a+b,求证:
(1)c2>ab;
(2)c-<a<c+
.
(本小题满分13分)下列是真命题还是假命题,用分析法证明你的结论.
命题:若a>b>c且a+b+c=0,则.