求证:1+2+22+…+25n-1能被31整除.
(本题满分9分) 已知数列的前n项和为
,且
.
(1)求数列的通项公式;(2) 当n为何值时,
达到最大?最大值是多少?
(本题满分8分)若集合,集合
,求集合A
B.
(本题满分6分) 画出不等式组所表示的平面区域(在所提供的平面直角坐标系内用阴影表示),并求出该平面区域的面积
数列满足
,
(
),
是常数.
(1)当时,求
及
的值;
(2)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(3)求的取值范围,使得存在正整数
,当
时总有
。
已知平面区域的外接圆
与
轴交于点
,椭圆
以线段
为长轴,离心率.
(1)求圆及椭圆
的方程;
(2)设椭圆的右焦点为
,点
为圆
上异于
的动点,过原点
作直线
的垂线交直线
于点
,判断直线
与圆
的位置关系,并给出证明。