如图,已知椭圆的离心率是
,
分别是椭圆
的左、右两个顶点,点
是椭圆
的右焦点。点
是
轴上位于
右侧的一点,且满足
.
(1)求椭圆的方程以及点
的坐标;
(2)过点作
轴的垂线
,再作直线
与椭圆
有且仅有一个公共点
,直线
交直线
于点
.求证:以线段
为直径的圆恒过定点,并求出定点的坐标.
(本小题满分12分)设Sn是正项数列的前n项和,
.(I)求数列
的通项公式;(II)
的值.
(本小题满分12分)函数在一个周期内,当
时,
取最小值1;当
时,
最大值3.(I)求
的解析式;(II)求
在区间
上的最值.
(本小题满分13分)
已知椭圆,以原点为圆心,椭
圆的短半轴为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结
交椭圆
于另一点,证明:直线
与x轴相交于定点
;
(3)在(2)的条件下,过点
的直线与椭圆
交于
、
两点,求
的取值
范围.
(本小题满分13分)
设数列为等差数列,且a5=14,a7=20。
(I)求数列的通项公式;
(II)若
(本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为
平方米.
(1)分别写出用表示
和
的函数关系式(写出函数定义域);
(2)怎样设计能使取得最大值,最大值为多少?