如图,已知椭圆的离心率是
,
分别是椭圆
的左、右两个顶点,点
是椭圆
的右焦点。点
是
轴上位于
右侧的一点,且满足
.
(1)求椭圆的方程以及点
的坐标;
(2)过点作
轴的垂线
,再作直线
与椭圆
有且仅有一个公共点
,直线
交直线
于点
.求证:以线段
为直径的圆恒过定点,并求出定点的坐标.
已知的导函数
的简图,它与
轴的交点是(0,0)和(1,0),
又
(1)求的解析式及
的极大值.
(2)若在区间(m>0)上恒有
≤x成立,求m的取值范围.
已知双曲线C:离心率是
,过点
,且右支上的弦
过右焦点
.
(1)求双曲线C的方程;
(2)求弦的中点
的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线
的斜率k 的值.若不存在,则说明理由.
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
<
时,求实数
取值范围.
高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.
(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;
(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.