如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
(2)求证:PC是⊙O的切线.
解不等式组,并把不等式组的解集在数轴上表示出来。
如图,已知:,
,
,
,那么AC与CE有什么关系?写出你的猜想并说明理由。
图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象。根据图象回答问题:在这个变化过程中,自变量是____,因变量是______。
9时,10时30分,12时所走的路程分别是多少?
他休息了多长时间?
他从休息后直至到达目的地这段时间的平均速度是多少?
火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图所示的方式打包,则打包带的长至少为多少?
在下面的解题过程的横线上填空,并在括号内注明理由
如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
解:∵∠A=∠F(已知)
∴AC∥DF( )
∴∠D=∠( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )