如图所示,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P.
求证:AB+CD=AD+BC
(本题满分14分) 已知角的顶点在原点,始边与
轴的正半轴重合,终边经过点
.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数
在区间
上的取值范围.
(本题满分15分)
已知实数满足
且
,设函数
(Ⅰ) 当时,求f (x)的极小值;
(Ⅱ) 若函数(
)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于.
(本题满分15分)
已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(
,
).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(本题满分14分)
在四棱锥P—ABCD中,底面ABCD是一直角梯,
与底面成30°角.
(1)若为垂足,求证:
;
(2)求平面PAB与平面PCD所成的锐二面角的正切值.
(本题满分14分)
已知等差数列的前
项和为
,且
.
(I)求数列的通项公式;
(II)若数列满足
,求数列
的前
项和.