如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上).
求证:AB∶AC为定值.
设,其中
.
(1)当时,求
的极值点;
(2)若为R上的单调函数,求
的取值范围.
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,
∠DAB=60°,AB=2AD=2,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13
后成为等比数列中的
、
、
.
(1)求数列的通项公式;
(2)数列的前n项和为
,求证:数列
是等比数列.
已知函数.
(1)求的最小正周期;
(2)求在区间
上的最大值和最小值.
(本小题满分14分)已知函数
(I)求函数在
上的最小值;
(II)对一切恒成立,求实数
的取值范围;
(III)求证:对一切,都有