如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.(1)当点E在棱AB上移动时,证明:D1E⊥A1D;(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.
中,角HC所对应的边分别为《、6、c,若. (1)求角A (2)若.,求.的单调递增区间.
将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.
将函数的图象F按向量平移后所得到的图象的解析式是,求向量.
设数列的前n项和为,为等比数列,且. (1)求数列和的通项公式; (2)设,求数列的前n项和.
(本小题满分12分) 如图,四棱锥S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若边BC上存在异于B,C的一点P,使得. (1)求a的最大值; (2)当a取最大值时,求异面直线AP与SD所成角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号