已知为椭圆
,
的左右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
,设
.
(1)证明: 成等比数列;
(2)若的坐标为
,求椭圆
的方程;
(3)在(2)的椭圆中,过的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
设
(1)求函数的最小正周期和单调递增区间
(2)当
已知函数
(1)求函数f(x)的极值;
(2)如果当时,不等式
恒成立,求实数k的取值范围;
(3)求证.
已知椭圆过点
,且离心率
。
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围。
在数列{}中,
,并且对任意
都有
成立,令
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设数列{}的前n项和为
,证明:
甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为
。
(1)求甲恰好得30分的概率;
(2)设乙的得分为,求
的分布列和数学期望;
(3)求甲恰好比乙多30分的概率.