已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
等比数列的各项均为正数,且. (1)求数列的通项公式; (2)设 ,求数列的前项和.
如图,在四棱锥中,底面是正方形,⊥平面,, ,分别是,的中点. (Ⅰ) 求证: (Ⅱ)求点到平面的距离.
已知数列的前项和. (Ⅰ)求数列的通项公式; (Ⅱ) 若数列满足,且,求.
如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点。 (I)求证:B1C//平面AC1M; (II)求证:平面AC1M⊥平面AA1B1B.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的单调递增区间.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号