某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
已知函数满足,其中且. (1)对于函数,当时,,求实数的取值集合; (2)当时,恒成立,求的取值范围.
已知的极坐标方程为,分别为在直角坐标系中与轴、轴的交点,曲线的参数方程为(为参数,且),为的中点,求:过(为坐标原点)的直线与曲线所围成的封闭图形的面积。
设直线是函数图象的一条对称轴,对于任意, , 当≤≤时,. (1)证明: 是奇函数; (2)当时,求:函数的解析式.
已知命题,命题(),且是的必要不充分条件,求实数的取值范围。
在中,,. (Ⅰ)求的值;(Ⅱ)设,求的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号