已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:f(a·b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=
(n∈N*).
考察下列结论:
①f(0)=f(1);②f(x)为偶函数;
③数列{an}为等比数列;
④数列{bn}为等差数列.
其中正确的结论共有( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知a,b,c是三条互不重合的直线,α,β是两个不重合的平面,给出
四个命题:①a∥b,b∥α,则a∥α;②a,b⊂α,a∥β,b∥β,则α∥β;③a⊥α,a∥β,则α⊥β;④a⊥α,b∥α,则a⊥b.
其中正确的命题个数是 ( )
A.1 | B.2 | C.3 | D.4 |
设x,y,z∈(0,+∞),a=x+,b=y+
,c=z+
,则a,b,c三数( )
A.至少有一个不大于2 | B.都小于2 |
C.至少有一个不小于2 | D.都大于2 |
函数f(x)=x3+sin x+1(x∈R)若f(a)=2,则f(-a)的值为 ( ).
A.3 | B.0 | C.-1 | D.-2 |
下列表述正确的是 ( )
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.
A.①②③ | B.②③④ |
C.②④⑤ | D.①③⑤ |
给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d
⇒a=c,b=d”;
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.
其中类比得到的结论正确的个数是 ( ).
A.0 | B.1 | C.2 | D.3 |