超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点 处,如图所示,直线 表示成纪大道.这时一辆小汽车由成纪大道上的 处向 处匀速行驶,用时5秒.经测量,点 在点 的北偏西 方向上,点 在点 的北偏西 方向上.
(1)求 、 之间的路程(精确到0.1米);
(2)请判断此车是否超过了成纪大道60千米 小时的限制速度?(参考数据: ,
如图,抛物线 经过 , 两点,与 轴交于点 ,连接 , , .
(1)求抛物线的表达式;
(2)求证: 平分 ;
(3)抛物线的对称轴上是否存在点 ,使得 是以 为直角边的直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.
如图, 为 的直径, 为 上一点, 为 延长线上一点, .
(1)求证: 为 的切线;
(2)线段 分别交 , 于点 , 且 , 的半径为5, ,求 的长.
如图,在 中,过点 作 , 是 的中点,连接 并延长,交 于点 ,交 的延长线于点 ,连接 , .
(1)求证:四边形 是平行四边形.
(2)若 , , ,求 的长.
如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于点 和 .
(1)求一次函数和反比例函数的表达式;
(2)请直接写出 时, 的取值范围;
(3)过点 作 轴, 于点 ,点 是直线 上一点,若 ,求点 的坐标.