已知椭圆E:+
=1(a>b>0)的离心率e=
,a2与b2的等差中项为
.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
过点作直线
与抛物线
相交于两点
,圆
(Ⅰ)若抛物线在点处的切线恰好与圆
相切,求直线
的方程;
(Ⅱ)过点分别作圆
的切线
,试求
的取值范围.
如图,在四棱锥P-ABCD中,PA底面ABCD,
DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.
等差数列的首项为
,公差
,前
项和为
,其中
.
(Ⅰ)若存在,使
成立,求
的值;
(Ⅱ)是否存在,使
对任意大于1的正整数
均成立?若存在,求出
的值;否则,说明理由.
已知向量.
(Ⅰ)若求
;
(Ⅱ)设的三边
满足
,且边
所对应的角为
,若关于
的方程
有且仅有一个实数根,求
的值.
(本小题满分14分)
已知函数。
(Ⅰ)求函数的单调区间。
(Ⅱ)若上恒成立,求实数
的取值范围
(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:
。