如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)证明:EO∥平面ACD;
(2)证明:平面ACD⊥平面BCDE.
如图,三棱锥中,
平面
,
,
,
为
中点.
(1)求证:平面
;
(2)求二面角的正弦值.
为了参加2013年东亚运动会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源如下表:
对别 |
北京 |
上海 |
天津 |
广州 |
人数 |
4 |
6 |
3 |
5 |
(1)从这18名对员中随机选出两名,求两人来自同一个队的概率;
(2)比赛结束后,若要求选出两名队员代表发言,设其中来自北京的人数为,求随机变量
的分布列,及数学期望.
已知函数的部分图像如图所示.
(1)求函数的解析式;
(2)若,
,求
.
已知函数,
.
(1)若,求证:当
时,
;
(2)若在区间
上单调递增,试求
的取值范围;
(3)求证:.
已知椭圆的离心率为
,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆的方程;
(2)抛物线与椭圆
有公共焦点,设
与
轴交于点
,不同的两点
、
在
上(
、
与
不重合),且满足
,求
的取值范围.