从原点O引直线交直线2x+4y-1=0于点M,P为OM上一点,已知OP·OM=1,求P点所在曲线的极坐标方程.
已知
是底面边长为1的正四棱柱,
是
和
的交点.
⑴ 设
与底面
所成的角的大小为
,二面角
的大小为
.求证:
;
⑵ 若点
到平面
的距离为
,求正四棱柱
的高.
已知函数
,其中常数
满足
。
⑴ 若
,判断函数
的单调性;
⑵ 若
,求
时
的取值范围。
已知复数 满足 ( 为虚数单位),复数 的虚部为2, 是实数,求 .
已知数列
和
的通项公式分别为
,
(
),将集合
中的元素从小到大依次排列,构成数列
。
⑴求三个最小的数,使它们既是数列
中的项,又是数列
中的项;
⑵
中有多少项不是数列
中的项?说明理由;
⑶求数列
的前
项和
(
)。
已知椭圆
(常数
),点
是
上的动点,
是右顶点,定点
的坐标为
.
⑴若
与
重合,求
的焦点坐标;
⑵若
,求
的最大值与最小值;
⑶若
的最小值为
,求
的取值范围。