已知f(x)=,n∈N*,试比较f(
)与
的大小,并且说明理由.
某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。
(1)求5名大学生中恰有2名被分配到体操项目的概率;
(2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).
已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.
(1)求an与k;
(2)若数列{bn}满足,
(n≥2),求bn.
已知函数和
(1)若函数在区间
不单调,求
的取值范围;
(2)当时,不等式
恒成立,求
的最大值.
已知抛物线C:与直线
相切,且知点
和直线
,若动点
在抛物线C上(除原点外),点
处的切线记为
,过点
且与直线
垂直的直线记为
.
(1)求抛物线C的方程;
(2)求证:直线相交于同一点.
已知各项均为正数的等差数列满足:
,各项均为正数的等比数列
满足:
,
.
(1)求数列和
的通项公式;
(2)若数列满足:
,其前
项和为
,证明
.