已知函数f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)当m=时,求函数f(x)在区间[1,3]上的极小值;
(2)求证:函数f(x)存在单调递减区间[a,b];
(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.
(本小题满分10分)选修4-1:几何证明选讲:
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.
已知,函数
(Ⅰ)若,求曲线
在点
处的切线方程.
(Ⅱ)若,求
在闭区间
上的最小值.
(本小题满分12分)椭圆:
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆的方程;
(2)设过点的直线
与椭圆
交于
两点,
为坐标原点,若
为直角三角形,求直线
的斜率.
(本小题满分12分)在如图所示的空间几何体中,平面平面
,
与
是边长为
的等边三角形,
,
和平面
所成的角为
,且点
在平面
上的射影落在
的平分线上.
(Ⅰ)求证:平面
;
(Ⅱ)求三棱锥的体积