(本小题12分)
随机调查某社区80个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别有关系,得到下面的数据表:
休闲方式 性别 |
看电视 |
看书 |
合计 |
男 |
10 |
50 |
60 |
女 |
10 |
10 |
20 |
合计 |
20 |
60 |
80 |
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求
的分布列和期望;
(2)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
参考公式: ,其中
参考数据:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
2.072 |
2.706 |
3.841 |
5.042 |
6.635 |
(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数。(1)求闭函数
符合条件②的区间[
];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数
的取值范围。
(12分)已知定义域为的单调函数
且
图关于点
对称,当
时,
.
(1)求的解析式;
(2)若对任意的,不等式
恒成立,求实数
的取值范围.
(本小题满分12分)函数是定义在
上的奇函数,且
.
(1)求实数的值.(2)用定义证明
在
上是增函数;
(3)写出的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).
(1)二次函数满足:
为偶函数且
,求
的解析式;
(2)若函数定义域为
,求
取值范围。
(3)若函数值域为
,求
取值范围。
(4)若函数在
上单调递减,求
取值范围。
(本小题满分12分)已知函数.(1)将函数
的解析式写成分段函数;
(2)在给出的坐标系中画出的图象,并根据图象写出函数
的单调区间和值域.