游客
题文

设函数f(x)=xn+bx+c(n∈N+,b,c∈R).
(1)设n≥2,b=1,c=-1,证明:f(x)在区间(,1)内存在唯一零点;
(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 几何不等式
登录免费查看答案和解析
相关试题

(选修4—2:矩阵与变换)(本小题满分10分)
求矩阵的逆矩阵.

(16分)已知函数, (其中),,设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当k=4时,若对任意的,存在,使,试求实数b的取值范围.。

(16分)已知工厂生产某种产品,次品率p与日产量x(万件)间的关系为
,每生产1件合格产品盈利3元,每出现1件次品亏损1.5元. (I)将日盈利额y(万元)表示为日产量(万件)的函数;(Ⅱ)为使日盈利额最大,日产量应为多少万件?

(16分)已知函数).
(I)若的定义域和值域均是,求实数的值;
(II)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

(14分)已知函数在定义域上为增函数,且满足
(1)求的值 (2)解不等式

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号