某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(3)是否存在v,使得小艇以v海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.
如图,焦距为的椭圆
的两个顶点分别为
和
,且
与n
,
共线.
(1)求椭圆的标准方程;
(2)若直线与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,
求实数的取值范围.
若正数项数列的前
项和为
,首项
,点
,
在曲线
上.
(1)求,
;
(2)求数列的通项公式
;
(3)设,
表示数列
的前项和,若
恒成立,求
及实数
的取值范围.
如图,三角形中,
,
是边长为
的正方形,平面
⊥底面
,若
、
分别是
、
的中点.
(1)求证:∥底面
;
(2)求证:⊥平面
;
(3)求几何体的体积.
已知函数.
(1)求的最小正周期和最小值;
(2)若,
且
,求
的值.
甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设,
表示甲乙抽到的牌的数字,
如甲抽到红桃2,乙抽到红桃3,记为
,
,写出甲乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(3)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.