游客
题文

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(3)是否存在v,使得小艇以v海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 解三角形
登录免费查看答案和解析
相关试题

某种出口产品的关税税率t.市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:,其中k.b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定k.b的值;
(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:.P = q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

如图示,已知平行四边形ABCD和矩形ACEF所在平面互相垂直,AB=1,AD=2,是线段EF的中点.
(1)求证:;(2)设二面角A—FD—B的大小为,求的值;
(3)设点P为一动点,若点P从M出发,沿棱按照的路线运动到点C,求这一过程中形成的三棱锥P—BFD的体积的最小值.

某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的重量(单位:克),重量的分组区间为,…,,由此得到样本的频率分布直方图,如右图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设为重量超过505克的产品数量,求的分布列.
(3)从流水线上任取5件产品,求恰有2件产品的重量超过505克的概率

已知向量,函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)在中,分别是角的对边,且,且,求的值.

(本小题满分14分)已知函数.
(Ⅰ)当时,求的单调递增区间;
(Ⅱ)求证:曲线总有斜率为的切线;
(Ⅲ)若存在,使成立,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号