复数z=且|z|=4,z对应的点在第一象限,若复数0,z,
对应的点是正三角形的三个顶点,求实数a、b的值.
(本小题满分14分)
已知函数,点
分别是函数
图象上的最高点和最低点.
(1)求点的坐标以及
的值;
(2)设点分别在角
的终边上,求
的值.
(本小题满分14分)
如图,在五面体ABCDEF中,四边形ABCD是平行四边形.
(1)若CF⊥AE,AB⊥AE,求证:平面ABFE⊥平面CDEF;
(2)求证:EF//平面ABCD.
(本小题满分14分)
若定义在上的函数
满足
,
,
.
(Ⅰ)求函数解析式;
(Ⅱ)求函数单调区间;
(Ⅲ)若、
、
满足
,则称
比
更接近
.当
且
时,试比较
和
哪个更接近
,并说明理由.
(本小题满分13分)
已知椭圆的下顶点为
,
到焦点的距离为
.
(Ⅰ)设Q是椭圆上的动点,求的最大值;
(Ⅱ)若直线与圆O:
相切,并与椭圆
交于不同的两点A、B.当
,且满足
时,求
AOB面积S的取值范围.
(本小题满分12分)
如图,三棱柱中,
平面
,
,
, 点
在线段
上,且
,
.
(Ⅰ)求证:直线与平面
不平行;
(Ⅱ)设平面与平面
所成的锐二面角为
,若
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面
,求直线
与
所成的角的余弦值.