设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2014)的值.
已知:、、同一平面内的三个向量,其中 (1)若,且,求的坐标; (2)若,且与垂直,求与的夹角.
已知,,且,,求.
已知函数为自然对数的底数). (1)求曲线在处的切线方程; (2)若是的一个极值点,且点,满足条件:. (ⅰ)求的值; (ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边. (1)求角的大小; (2)若,求△ABC的面积.
已知函数 (1)若在上是增函数,求的取值范围; (2)若在处取得极值,且时,恒成立,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号