已知函数f(x)=lnx-ax2+(2-a)x.(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f;(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:<0.
已知正数成等差数列,且公差,用反证法求证:不可能是等差数列。
已知,且,用分析法求证:.
观察以下各等式:, 分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点. (1)求a和b的值; (2)求f(x)的单调区间.
椭圆的两个焦点分别为,离心率。 (1)求椭圆方程; (2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段中点的横坐标为,求直线倾斜角的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号