已知函数,函数
是函数
的导函数.
(1)若,求
的单调减区间;
(2)若对任意,
且
,都有
,求实数
的取值范围;
(3)在第(2)问求出的实数的范围内,若存在一个与
有关的负数
,使得对任意
时
恒成立,求
的最小值及相应的
值.
设集合,
,分别从集合
和
中随机取一个数
和
.
(1)若向量,
,求向量
与
的夹角为锐角的概率;
(2) 记点,则点
落在直线
上为事件
,
求使事件的概率最大的
.
已知有两个不相等的负实根;
不等式
的解集为
,
若或
为真命题,
且
为假命题,求m的取值范围。
已知的图象经过点(0,1),且在x=1处的切线方程是y=x-2。
(1)求的解析式;
(2)求的单调递增区间。
已知等差数列中,
,
。
(1)求数列的通项公式;
(2)若数列的前
项和
,求
的值.
在△中,已知
、
,动点
满足
.
(1)求动点的轨迹方程;
(2)设,
,过点
作直线垂直于
,且与直线
交于点
,试在轴上确定一点
,使得
;
(3)在(II)的条件下,设点关于轴的对称点为
,求
的值.