如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围成36m长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?
(2)若使每间虎笼的面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?
已知数列的前
和为
,其中
且
(1)求(2)猜想数列
的通项公式,并用数学归纳法加以证明.
如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;
(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.
已知复数满足
,
的虚部是2.
(1)求复数;
(2)设在复平面上的对应
点分别为
,求
的面积.
(本小题满分14分)
已知函数满足如下条件:当
时,
,且对任意
,都有
.
(1)求函数的图象在点
处的切线方程;
(2)求当,
时,函数
的解析式;
(3)是否存在,
,使得等式
成立?若存在就求出(
),若不存在,说明理由.
(本小题满分14分)
执行下面框图所描述的算法程序,记输出的一列数依次为,
,…,
,
,
.(注:框图中的赋值符号“
”也可以写成“
”或“:
”)
(1)若输入,写出输出结果;
(2)若输入,求数列
的通项公式;
(3)若输入,令
,求常数
(
),使得
是等比数列.