如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点
,连结A¢B.
(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.
一个口袋中有个白球和
个红球
且
,每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ)试用含的代数式表示一次摸球中奖的概率
;
(Ⅱ)若,求三次摸球恰有一次中奖的概率;
(Ⅲ)记三次摸球恰有一次中奖的概率为,当
为何值时,
取最大值.
已知向量,
,
,函数
的最大值为
.
(Ⅰ)求;
(Ⅱ)将函数的图像向左平移
个单位,再将所得图像上各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数
的图像,求
在
上的值域.
给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,且其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆
的“准圆”上的一个动点,过动点
作直线
,使得
与椭圆
都只有一个交点,试判断
是否垂直,并说明理由.
已知函数.
(Ⅰ)若在
处的切线垂直于直线
,求该点的切线方程,并求此时函数
的单调区间;
(Ⅱ)若对任意的
恒成立,求实数
的取值范围.