已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.(1)求a1,a2的值;(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.
如图,四棱锥中,面面,底面是直角梯形,侧面是等腰直角三角形.且∥,,,. (1)判断与的位置关系; (2)求三棱锥的体积; (3)若点是线段上一点,当//平面时,求的长.
已知为锐角,且,函数,数列{}的首项. (Ⅰ)求函数的表达式; (Ⅱ)求数列的前项和.
的外接圆半径,角的对边分别是,且. (1)求角和边长; (2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.
已知函数 (Ⅰ)求不等式的解集; (Ⅱ)若关于x的不等式的解集非空,求实数的取值范围.
已知函数. (1)若的解集为,求实数的值. (2)当且时,解关于的不等式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号