某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(1)完成下表
|
甲(kg) |
乙(kg) |
件数(件) |
A |
|
5x |
x |
B |
4(40-x) |
|
40-x |
(2)安排生产A、B两种产品的件数有几种方案?试说明理由;
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.
已知,
,试求
的值。
按要求解方程:(每小题5分,共20分)
(1) (2)
(3)(公式法) (4)
(配方法)
计算或化简:(每小题5分,共10分)
(1)(2)
(本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=
经过点C,交y轴于点G,且∠AGO=30°。
(1)点C、D的坐标分别是C(),D();
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存
在,请求出此时抛物线的解析式;若不存在,请说明理由。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?