如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
(11·大连)(本题12分)如图7,某建筑物BC上有一旗杆AB,小明在与BC
相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的
观测点与地面的距离EF为1.6m.
⑴求建筑物BC的高度;
⑵求旗杆AB的高度.
(结果精确到0.1m.参考数据
:
≈1.41,sin52°≈0.79,tan52°≈1.28)
(11·大连)(本题9分)如图6,等腰梯形ABCD中,AD∥BC,M是
BC的中点,求证:∠DAM=∠ADM.
(11·天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,
OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边
长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向
左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函
数关系式.
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是
否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;
若不存在,请说明理由.